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Equilibrium Theory for the Hard-Core Systems 
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It is found that the density expansion in the argument of the exponential 
function gives a fine convergence on the equation of state of the hard-sphere 
system. The pair distribution function and the equation of state is constructed 
by an intuitive kinetic theoretical method. The equation of state of the hard-core 
system with attractive potential is constructed semiempirically with the aid of 
this simple analytical result, and Kamerling-Onnes' constant of the critical 
point is obtained analytically. 
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1. I N T R O D U C T I O N  

Since Kirkwood and Mayer presented the methodologies of obtaining the 
pair distribution function and the equation of state, fine approximate 
equations such as Y v o n - B o r n - G r e e n  (YBG) equation, Percus-Yevick (PY) 
equation and the hypernetted-chains (HNC)  equation were obtained. In 
spite of this, there are still many  remaining problems. In particular, there 
was no guiding principle on what we should choose for the dense fluid as 
an expansion parameter.  Thus, though more diagrams are retained in the 
H N C  equation than in the PY equation, it seems that the PY equation gives 
better numerical results than the H N C  equation. 

In this paper, we show that the equation of state of the hard-sphere 
system may be approximated well by the density expansions in the argu- 
ment of the exponential function. This calculation is easily performed up to 
the :second order in density by an elementary kinetic theoretical method. 
The resulting equation of state has a simple analytical form and exhibits a 

i Department of Physics, Faculty of Science, Tohoku University, Sendai, 980, Japan. 

105 
0022-4715/83/0700-0105503.00/0 �9 1983 Plenum Publishing Corporation 



106 Shinomoto 

quite fine agreement with experimental results in the whole region of the 
fluid phase. 

By means of this equation of state, we shall construct a semiempirical 
one for the hard-core system with attractive potential. This also gives a 
quite simple analytical solution of the density for the critical point. 

2. THE HARD-SPHERE SYSTEM 

2.1. Pair Distribution Function 

We show a method to obtain the pair distribution function from an 
intuitive consideration preliminarily given in the previous article. (1) The 
pair distribution is enhanced near the contact distance o which is a 
diameter of the particle. This has been interpreted intuitively. (2) Let a 
particle be fixed at the origin, and a second particle be fixed at a distance r 
(o < r < 20) from the first. The centers of the other particles can not enter 
the overlapping "spheres of influence" or "covering spheres" defined as 
concentric spheres of radius o of the two fixed particles. As a result, the 
second particle suffers less collisions on the side facing the first than on the 
opposite side. This induces a mean attractive force on the second toward 
the first (see Fig. 1). 

It  is interesting to construct the pair distribution function directly from 
this consideration. 

n 

""I "'7"'-(-'\ 
Fig. 1. A situation that a particle is at the origin and a second particle is at a distance r 

(o < r < 20) from the first. The dashed circles represent the "sphere of influence." 
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First, we assume that the effect of the other particles can be treated as 
a mean "pressure" fi on the sphere of influence. Then, the mean "force" 
can be expressed as 

~ ( r )  = fRd2a P (2. l) 

where d2~ denotes the surface element and R is the part of the surface that 
does not overlap. Furthermore, if we assume the uniformity of this pres- 
sure, it is easily found 

F,(r)  = -fivra2[ 1 - ( r /2a )  2] (2.2 t 

for a < r < 2a. 
As the second particle is brought adiabatically from infinite distance to 

distance r, the work or the potential of mean "force" becomes 

~)p(r) = - ( r d r ' F  (r') = ~r J 2 o  p - ( 2 . 3 )  

for o < r < 2a, where q~(r) is defined as 

l ( r  _ 212(r  + 4) (2.4) 

The probability of finding a particle on condition that another particle 
is at the origin may be put equal to the Boltzmann factor: 

g(r)  = exp[ - • ( r ) / k T ]  (2.5) 

where k is the Boltzmann constant and T is the temperature. 
The mean pressure/7 is obtained from the elementary kinetic theory as 

/7 = ~kT  (2.6) 

where 17 is the density at the surface of the overlapping spheres of influence. 
For moderately dense gases, we may expect that many particles seldom 
gather together and approximate this density by the average density of the 
whole system, n. 

Then, the pair distribution function becomes 

where 

g (r) = exp [ yg}(r) ] (2.7) 

y =---(rr/6)o3n (2.8) 

is the ratio of the total volume occupied by the spheres to the volume of the 
system. 

This result turns out to be the "first" approximation of the YBG 
equation and at the same time the potential of mean "force" here is 
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identified as the leading term in the density expansion of dpp(r): 

/ /2 / /3 
g ( r ) =  e " A  = l + n e/~ + ~ ~x~ + ~ ~ + . . .  (2.9) 

Here, the graph is defined as 

o/~ =;d3r3 f13 f23 (2.10) 

where ftj is the Mayer function. 
The way to obtain more elaborate treatments is to improve the 

uniformity assumption of the mean "pressure," which can readily repro- 
duce the YBG equation that is found in the usual configuration integration 
method.(2) 

2.2. Equation of State 

In the same way as the preceding subsection, we can calculate the 
density near the wall. When we fix a particle at a distance x (0 /2  < x 
< 30/2) from the wall, the centers of other particles cannot enter the 
overlapping "sphere of influence" and "plane of influence," the latter being 
defined as the plane at the distance 0 /2  from the wall. As a result, the 

Fig. 2. 
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A situation that a particle is at the distance x from the wall. The dashed line at the 
distance 0 / 2  from the wall represents the "plane of influence." 
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particle suffers fewer collisions on the side facing the wall than on the 
opposite side. This induces a mean attractive force toward the wall (see Fig. 
2). In other words, the particle is pressed onto the wall by other particles. 

A calculation analogous to the one leading to Eq. (2.2) gives the mean 
"force": 

o (2.11) 

for 0 /2  < x < 30/2,  and the potential of mean "force": 

_ s  dx'F,(x') ~r �9 s(X) = = - ( 2 . 1 2 )  

~p(x) = 2 - ~ g 

Then, the density near the wall becomes 

n+ ( ' ) ( x )  = n exp [ yqJ(x) ] (2.14) 

where we have assumed that /7  = nkT. The density at the distance in 
contact with the wall becomes 

n2{2Y(o+/2) = rte 4y (2.15) 

where o+ means e + 0. 
Thus, we obtain the pressure on the wall: 

and the equation of state: 

P = n}~)(o+/2)kT (2.16) 

P/nkT  = exp(4y) (2.17) 

This equation of state has an analytical form completely different from the 
existing ones; they are algebraic functions of y,  while ours is a transcenden- 
tal function. This is a first-order calculation in the argument of exponential 
function and we can proceed to the second approximation. 

The only assumption we adopted in the argument above is the unifor- 
mity of the density, which breaks down in the denser system. There are 
mainly two causes that break the uniformity around the fixed particle near 
the wall. We already showed as the first approximation that there is a 
density gradient around the particle and near the wall. We should incorpo- 
rate these when we proceed to the second approximation. 

The inhomogeneity of the density causes the inhomogeneity of the 
"pressure." Then, the calculation of the mean "force" near the wall should 
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be written as 

2 r q r  r 2 1 r  ~ 

Fs(2)(x) = a JoodOJo d~ p(x, cosO)cosOsinO 

where 

cos00 = { l / O -  1 /2  forf~ 0/23o/2 <<xx  < 3 0 / 2  

and the "pressure" /7  is 

f i (x ,  co s0 )  = ~s(X - acosS)kT 

The  density r~ s to be inserted is 

~s(X') = ,,~'(x ')  ~(~+ ) 

(2.18) 

(2.19) 

(2.20) 

I - -  
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Fig. 3. Comparison of the equations of state to the molecular-dynamics results by Alder and 
Wainwright. S 1 is Eq. (2.17) and S 2 is Eq. (2,23). WT(p) and WT(c) are the Wertheim-Thiele 
solutions of PY equation (see Table I). The squares show the results obtained by Alder and 
Wainwright. y = 0.47 is the Alder transition density. 
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Table I. Virial Expansions" 

Exact 1 + 4y + 10y 2 + 18.36), 3 + 28,2y 4 + 39.5y 5 + 

111 

WT(p) 1 + 2y + 3y 2 

(1 - y)2 

WT(c) 1 + y + y2 
(1 _y)3 

S l exp(4y) 1 + 4y + 8y 2 + 10.67y 3 + 10.67y a + 8.57)," s + 

S 2 exp(4y + 2), 2) 1 + 4y + 10y 2 + 18.67 9 + 28.67y 4 + 37.87y 5 + 

aExact: Ree-Hoover  result{4); WT: Wertheim-Thiele  solutions of PY equation; (p): the 
solution obtained by the pressure equation; (c): the solution obtained by the compressibil- 
ity equation; Sj :  Eq. (2.17); $2: Eq. (2.23). 

1 + 4y + 10y 2 + 16y 3 + 22y 4 + 28y s + 

1 + 4 y +  10y2+ 19y3+31y4+46yS+ 

which corresponds to the superposition approximation. The potential of the 
mean "force" can be obtained as 

O~2)(x ) = _ s  ax' F~r ') (2.21) 
5a /2  

We carried out this calculation up to the second order in the density. 
This potential at the distance of the contact to the wall becomes 

~ 2 ) ( a + / 2 )  = 4kTyeSy/2(1 - 2y) = - 4 k T y ( l  + y / 2 )  (2.22) 

where we have retained only terms up to o r d e r  y2, since the second 
approximation is valid only to this order. In this way, we obtain the 
equation of state: 

P / n k T  = exPI4y(1 + y / 2 ) ]  (2.23) 

Figure 3 shows the comparison of Eq. (2.23) to the molecular-dynamics 
results obtained by Alder and Wainwright. {3) We find that this second 
approximation equation of state exhibits quite fine agreement with the 
molecular-dynamics results up to the Alder transition density. In Table I, 
we compare our result with accurate virial expansion of Ree and Hoover ~4) 
and other theories. {5~ It is rather remarkable that our equation of state gives 
a quite fine agreement up to the sixth virial. 

3. SEMIEMPIRICAL EQUATION OF STATE FOR THE HARD-CORE 
SYSTEM WITH ATTRACTIVE POTENTIAL 

Young and Alder (6) applied the semiempirical equation of state of 
Carnahan and Starling (7) to the hard-core systems with attractive tails 
empirically. It may be interesting to apply our equation of state to these 
systems as it has a much simpler form. 
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The contribution of the attractive potentials may well be approximated 
by van der Waals' attractive term. So we assume that the total pressure is 
written in an additive form: 

p _ N k T  e4y+2y 2 a 
V V 2 (3.1) 

where the first term is our equation of state (2.23) for the hard-sphere 
system and the second term is van der Waals' attractive term. The critical 
point is obtained by the equations 

0 (3 o2) 

These equations are reduced to a form 

(2y)3 + 3(2y)2+ 3(2y) - 1 = 0 (3.3) 

and it has a simple solution: 

Yc = ( 21/3 - 1)/2 = 0.1300 (3.4) 

and Kamerlingh-Onnes' constant is given by 

N k T c  _ 2 e -4yc-2y2 = 2.787 (3.5) 
Pc Vc 2 - (2y c + 1) 2 

These results are sufficiently close to Young and Alder's values, 0.1304 and 
2.786. 

4. C O N C L U S I O N  

We have presented a method which gives a fairly good prescription to 
obtain the equilibrium properties of the hard-sphere system and at the same 
time simple semiempirical solution for the critical point of the hard-core 
system with attractive potential. 

We should note here that there have been other intuitive methods to 
supply the equations of state for the hard-sphere system. One of these is 
established by Clausius and Boltzmann. (8) Their method is founded on the 
covolume concept. Another is the scaled particle theory by Reiss, Frisch, 
and Lebowitz. (9) How do these concepts keep in touch and lose contact 
with each other inherently? This question arouses a logical interest. 

Recently, the author is informed that the distribution near the wall is 
treated elaborately by the configuration integration method by Percus (l~ 
and others, though they did not derive the equation of state directly from 
the distribution. The incorporation of our consideration into their treatment 
may give rise to better results. 
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